mean(log2(condition1)) - mean(log2(condition2)) 与 log2(geo_mean(condition1)/geo_mean(condition2))的区别
这是一个非常经典的问题,涉及到对数空间中的平均与几何平均数的数学性质。我们来一步步分析:
\text{diff}_1 = \text{mean}(\log_2(\text{condition1})) - \text{mean}(\log_2(\text{condition2}))
\text{diff}_2 = \log_2\left(\frac{\text{geo\_mean}(\text{condition1})}{\text{geo\_mean}(\text{condition2})}\right)
这是因为:
\text{geo\_mean}(x_1, x_2, \dots, x_n) = \left(\prod_{i=1}^{n} x_i\right)^{1/n}
\log_2(\text{geo\_mean}(x)) = \frac{1}{n} \sum_{i=1}^{n} \log_2(x_i) = \text{mean}(\log_2(x))
因此:
\log_2\left(\frac{\text{geo\_mean}(A)}{\text{geo\_mean}(B)}\right) = \log_2(\text{geo\_mean}(A)) - \log_2(\text{geo\_mean}(B)) = \text{mean}(\log_2(A)) - \text{mean}(\log_2(B))
这两个公式 数学上完全等价,即:
\boxed{ \text{mean}(\log_2(A)) - \text{mean}(\log_2(B)) = \log_2\left(\frac{\text{geo\_mean}(A)}{\text{geo\_mean}(B)}\right) }