Text2Diagram is an AI based diagramming tool that uses Natural language text to create diagrams.https://github.com/bhaskatripathi/Text2Diagramwebrtchttps://github.com/livekit/livekithttps://github.com/AudioLLMs/Awesome-Audio-LLMIntroduction to Text-to-Speech Using LLM’shttps://medium.com/@prajwal_/introduction-to-text-to-speech-using-llms-58ef41a92f9ehttps://17aitech.com/?p=13611
https://github.com/Lightning-AI/litgpthttps://huggingface.co/THUDM/chatglm-6b/blob/main/modeling_chatglm.py
<a href="https://colab.research.google.com/gist/wangyang1749/f783b1fbdfd15ae9f3fa133499a035ca/graphrag_openai_neo4j_langchain.ipynb" target="_black"><img alt="Static Badge" src="/badge/colab-badge.svg"></a> <a href="https://gist.github.com/wangyang1749/f783b1fbdfd15ae9f3fa133499a035ca" target="_black"><img alt="Static Badge" src="/badge/github-badge.svg"></a>
import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = "hello" inputs = tokenizer(input_text, return_tensors="pt")
https://ant-design-charts.antgroup.com/zh/examples/statistics/line#line-var-sizehttps://zhuanlan.zhihu.com/p/27903098086https://sandeep14.medium.com/running-graphrag-locally-with-neo4j-and-ollama-text-format-371bf88b14b7点击下载
点击下载http://wangyang-bucket.oss-cn-beijing.aliyuncs.com/cms/image/sh_1741857686607.pdf
https://sandbox.neo4j.com/
https://python.langchain.ac.cn/docs/how_to/graph_constructing/----小爱发货内容----
接口:
-----每周有老客户专属小额福利活动,可联系聊天室里专员了解----sk-FgKk2OO5RYzYRJEf7eaMytOLsuIbZecGxaJvRnWDg1GCIkNhhttps://js.langchain.com/docs/integrations/chat/https://onlinelibrary.wiley.com/doi/full/10.1002/qub2.69https://link.springer.com/article/10.1007/s13721-024-00458-1https://arxiv.org/abs/2502.06890Foundation models in bioinformatics
https://www.mdpi.com/2813-2998/4/1/9#https://link.springer.com/article/10.1186/s13073-024-01315-6Learning the language of protein-protein interactions https://github.com/VarunUllanat/mintseqLens: optimizing language models for genomic predictions https://www.biorxiv.org/content/10.1101/2025.03.12.642848v1
https://jyj.xianyang.gov.cn/zwgk/fdzdgknr/zcwj/wjzq/202403/t20240319_1744296.htmlhttps://readloudly.com/viewer?type=reader&id=67e143b2947f68c8ab10a163&page=1https://mermaid.live/https://ant-design-charts.antgroup.com/exampleshttps://tidyplots.org/https://www.ncbi.nlm.nih.gov/books/NBK179288/https://www.ncbi.nlm.nih.gov/home/tools/Improved metagenome binning and assembly using deep variational autoencoders