图片alt
metadata <- count_obj@metadata %>% filter(tissue_type_id %in% c("01", "11")) %>% add_count(patient_id, name = "n_patient")%>% filter(n_patient == 2) %>% arrange(patient_id,tissue_type_id) %>% as.data.frame() group <- metadata$group %>% as.factor() paired_counts <- count_obj@count[,metadata$cases] keep <- rowSums(paired_counts > 0) >= 38 paired_counts <- paired_counts[keep,]
boxplot(log2(paired_counts+1), las = 2, outline = F, col = group) limma::plotDensities(log2(paired_counts+1), legend = T,group=group,col = c("green","red"))
library(DESeq2) group <- metadata$group %>% as.factor() colData = data.frame(sample_id = colnames(paired_counts), group = group) DDS <- DESeq2::DESeqDataSetFromMatrix(paired_counts, colData = metadata, design = ~ group) vst <- DESeq2::vst(DDS) counts_vst <- assay(vst) boxplot(counts_vst, las = 2, outline = F, col = group) limma::plotDensities(counts_vst , legend = F,group=metadata$group)
keep <- rowSums(paired_counts > 0) >= 38
expr <- lnRAN_mRNA(fpkm_obj)@lnRNA[lnRNA_deg_sig$symbol,] keep <- rowSums(expr > 0.5)>=2 # keep <- rowSums(cpm(y) > 0.5) >= 2 table(keep)
keep <- filterByExpr(exprSet,group = group)
makeContrasts(contrasts=cts, levels=design) 1 比较的 -1 被比较的
makeContrasts(contrasts=cts, levels=design)
# edgeR差异基因分析 library(edgeR) group <- c(rep(1,length(Norm_sample)),rep(2,length(Tumm_sample))) y <- DGEList(counts=count_order,group=group) # 数据过滤 keep <- filterByExpr(y) y <- y[keep,,keep.lib.size=F] # 计算标准化因子 y <- calcNormFactors(y) # 计算离散度 y <- estimateDisp(y) # 显著性检验 et <- exactTest(y) # 获取靠前的基因 et <- topTags(et,n=100000) # 转换为数据框 et <- as.data.frame(et) # 将行名粘贴为第一列 et <- cbind(rownames(et),et) str(et) ggplot(et,aes(x=logFC,y=-log10(FDR)))+ geom_point()
https://www.jianshu.com/p/e68c95a42cd6https://www.jianshu.com/p/f009bea514af?utm_campaign=haruki