给定为特征(例如,线性模型的系数)分配权重的外部估计器,递归特征消除(RFE)的目标是通过递归地考虑越来越小的特征集来选择特征。首先,在初始特征集上训练估计器,并通过任何特定属性(如coeff_,feature_importances_)或可调用属性来获得每个特征的重要性。然后,从当前的一组特征中删除最不重要的特征。该过程在修剪后的集合上递归地重复,直到最终达到所需数量的要选择的特征。
StratifiedKfold method over Kfoldhttps://www.kaggle.com/general/231173
https://www.yourdatateacher.com/2021/05/05/feature-selection-in-machine-learning-using-lasso-regression/https://stackoverflow.com/questions/19018333/gridsearchcv-on-logisticregression-in-scikit-learn
from sklearn.ensemble import RandomForestClassifier import pandas as pd from sklearn.feature_selection import RFECV from sklearn.model_selection import StratifiedKFold import matplotlib.pyplot as plt from sklearn.utils import shuffle import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV, cross_val_score, KFold from sklearn.metrics import RocCurveDisplay from sklearn.metrics import auc from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import RandomForestClassifier import pandas as pd from sklearn.feature_selection import RFECV from sklearn.model_selection import StratifiedKFold import matplotlib.pyplot as plt from sklearn.utils import shuffle import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV, cross_val_score, KFold from sklearn.metrics import RocCurveDisplay from sklearn.metrics import auc from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import RandomForestClassifier import pandas as pd from sklearn.feature_selection import RFECV from sklearn.model_selection import StratifiedKFold import matplotlib.pyplot as plt from sklearn.utils import shuffle import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV, cross_val_score, KFold from sklearn.metrics import RocCurveDisplay from sklearn.metrics import auc from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectFromModel ## 导入数据 X = pd.read_csv("merged_abundance_table_species.0.1.txt", sep='\t',index_col=0).T Y = pd.read_csv("metadata.txt", sep='\t',index_col=0).values.ravel() ## 数据预处理 feature = X.columns scaler = StandardScaler() scaler.fit(X) X = scaler.transform(X) Y = np.array(Y) 特征选择 ## 特征选择 selector = SelectFromModel(estimator=LogisticRegression(C=1, penalty='l1', solver='liblinear')).fit(X, Y) selector.estimator_.coef_ feature[selector.get_support()] print(len(feature[selector.get_support()])) select_X = selector.transform(X) ## 一次嵌套交叉验证 rfc = RandomForestClassifier() rfc = RandomForestClassifier() p_grid = {"n_estimators": [20,50], 'max_depth': [5,10,20]} outer_cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1) inner_cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1) clf = GridSearchCV(estimator=rfc, param_grid=p_grid, cv=inner_cv) cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1) # cv = KFold(n_splits=5, shuffle=True, random_state=1) tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) fig, ax = plt.subplots(figsize=(6, 6)) for fold, (train, test) in enumerate(cv.split(select_X, Y)): clf.fit(select_X[train], Y[train]) viz = RocCurveDisplay.from_estimator( clf, select_X[test], Y[test], name=f"ROC fold {fold}", alpha=0.3, lw=1, ax=ax, ) interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) aucs.append(viz.roc_auc) ax.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)") mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot( mean_fpr, mean_tpr, color="b", label=r"Mean ROC (AUC = %0.2f $\pm$ %0.2f)" % (mean_auc, std_auc), lw=2, alpha=0.8, ) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between( mean_fpr, tprs_lower, tprs_upper, color="grey", alpha=0.2, label=r"$\pm$ 1 std. dev.", ) ax.set( xlim=[-0.05, 1.05], ylim=[-0.05, 1.05], xlabel="False Positive Rate", ylabel="True Positive Rate", title=f"Mean ROC curve with variability", ) ax.axis("square") ax.legend(loc="lower right") plt.show() ## 30次嵌套交叉验证 rfc = RandomForestClassifier() p_grid = {"n_estimators": [20,50], 'max_depth': [5,10,20]} NUM_TRIALS = 30 nested_scores = np.zeros(NUM_TRIALS) for i in range(NUM_TRIALS): inner_cv = StratifiedKFold(n_splits=4, shuffle=True, random_state=i) outer_cv = StratifiedKFold(n_splits=4, shuffle=True, random_state=i) clf = GridSearchCV(estimator=rfc, param_grid=p_grid, cv=inner_cv) nested_score = cross_val_score(clf, X=select_X, y=Y, cv=outer_cv) nested_scores[i] = nested_score.mean() print(" nested_scores of {:6f} with std. dev. of {:6f}.".format( nested_scores.mean(), nested_scores.std())) # Plot scores on each trial for nested and non-nested CV plt.figure() plt.subplot(211) (nested_line,) = plt.plot(nested_scores, color="b") plt.ylabel("score", fontsize="14") plt.legend( [ nested_line], [ "Nested CV"], bbox_to_anchor=(0, 0.4, 0.5, 0), ) plt.title( "Nested Cross Validation", x=0.5, y=1.1, fontsize="15", ) plt.show()