ceRNA网络分析
最后发布时间:2021-08-09 11:36:21
浏览量:
表达差异
- 获得差异的mRNAs,miRNA,lncRNA
- 使用火山图和热图对差异分析结果进行可视化
ceRNA网络
- lncRNA可以作为miRNA的海绵去竞争性的结合miRNA,从而调节mRNA的表达
lncRNA与miRNA相互作用
- 使用miRCode预测lncRNA与miRNA之间的关系
- 从miRCode数据库中预测的结果为:
170个DEmiRNA
中有18个
可以与184个DElncRNA
相互作用
miRNA与mRNA相互作用
- 使用miRTarBase,miRDB,TargetScan预测miRNA靶向的mRNA
- 从miRTarBase/miRDB/TargetScan数据库中预测
18个DEmiRNAs
得到820个
向mRNAs - 将预测得到的mRNA与测序数据差异的mRNA取交集,得到49个差异表达的靶mRNA
网络图
- 使用Cytoscape可视化网络,lnsRANs,miRNAs,mRNAs分别由菱形,矩形,椭圆形表示, 红色节点表示高表达, 蓝色节点表示第表达
生存分析
- 为了阐明具有愈后特征的lncRNAs,miRNAs,mRNAs,使用survival R packages评估了ceRNA网络中lncRNA,miRNA和mRNA中的表达与LUSC患者总生存期(OS)之间的关系,设阈值为
p<0.05
,结果表明: - 184个DElncRNA中有11个与总生存率显著相关
- 只有一个DEmiRNA(hsa-mir-183)与LUSC的总生存率相关
- 在
49个
DEmRNA中有5个LUSC( CITED2, CHAF1A, LIMCH1, LRRK2, SLC16A9 )与LUSC总生存率相关
为进一步探索lncRNA与愈后之间的关系, 使用cox回归对ceRNA网络中的184个DElnRNAs构建临床风险模型
预后模型
富集分析
ceRNA子网络
miRNA_lnRNA <- readRDS("result/miRNA_lnRNA.rda")
miRNA_mRNA <- readRDS("result/miRNA_mRNA.rda")
lnRNA_miRNA_mRNA <- merge(miRNA_lnRNA,miRNA_mRNA,by="miRNA")
lncRNA_deg_ce <- lncRNA_deg_sig%>%
plyr::rename(c(symbol="lnRNA"))%>%
mutate(lnRNA_direction=ifelse(logFC>0,"up","down"))%>%
dplyr::select(lnRNA,lnRNA_direction)
miRNA_deg_ce <- miRNA_deg_sig%>%
plyr::rename(c(symbol="miRNA"))%>%
mutate(miRNA_direction=ifelse(logFC>0,"up","down"))%>%
dplyr::select(miRNA,miRNA_direction)
mRNA_deg_ce <- mRNA_deg_sig%>%
plyr::rename(c(symbol="mRNA"))%>%
mutate(mRNA_direction=ifelse(logFC>0,"up","down"))%>%
dplyr::select(mRNA,mRNA_direction)
lnRNA_miRNA_mRNA_ <- lnRNA_miRNA_mRNA
lnRNA_miRNA_mRNA <- lnRNA_miRNA_mRNA_ %>%
inner_join(lncRNA_deg_ce,by="lnRNA")%>%
inner_join(miRNA_deg_ce,by="miRNA")%>%
inner_join(mRNA_deg_ce,by="mRNA")%>%
filter(lnRNA_direction!=miRNA_direction)%>%
filter(miRNA_direction!=mRNA_direction)
length(unique(lnRNA_miRNA_mRNA$lnRNA))
saveRDS(lnRNA_miRNA_mRNA,file = "result/lnRNA_miRNA_mRNA.rda")
# readRDS("result/miRNA_lnRNA.rda")%>%
# filter(lnRNA=="LINC00460", miRNA=="hsa-mir-143")
cytoscape <- function(lnRNA_miRNA_mRNA,filename){
ce_lnRNA <- unique(lnRNA_miRNA_mRNA$lnRNA)
ce_miRNA <- unique(lnRNA_miRNA_mRNA$miRNA)
ce_mRNA <- unique(lnRNA_miRNA_mRNA$mRNA)
cat("ceRNA网络中有: ", length(ce_lnRNA),
" 个lnRNA对应 ",length(ce_miRNA)," 个miRNA, ",
length(ce_miRNA)," 的miRNA对应 ",
length(ce_mRNA), "的mRNA")
miRNA_lnRNA <<- unique(lnRNA_miRNA_mRNA%>%dplyr::select(lnRNA,miRNA))
miRNA_mRNA <<- unique(lnRNA_miRNA_mRNA%>%dplyr::select(miRNA,mRNA))
lncRNA_deg_ce <- lncRNA_deg_sig%>%
plyr::rename(c(symbol="lnRNA"))%>%
filter(lnRNA %in% ce_lnRNA)%>%
mutate(direction=ifelse(logFC>0,"up","down"),type="lncRNA")%>%
dplyr::select(name=lnRNA,direction,type)
miRNA_deg_ce <- miRNA_deg_sig%>%
plyr::rename(c(symbol="miRNA"))%>%
filter(miRNA %in% ce_miRNA)%>%
mutate(direction=ifelse(logFC>0,"up","down"),type="miRNA")%>%
dplyr::select(name=miRNA,direction,type)
mRNA_deg_ce <- mRNA_deg_sig%>%
plyr::rename(c(symbol="mRNA"))%>%
filter(mRNA %in% ce_mRNA)%>%
mutate(direction=ifelse(logFC>0,"up","down"),type="mRNA")%>%
dplyr::select(name=mRNA,direction,type)
cytoscape_type <- bind_rows(mRNA_deg_ce,miRNA_deg_ce,lncRNA_deg_ce)%>%
mutate(type = str_c(direction,type,sep="_"))%>%
dplyr::select(-2)
write.csv(cytoscape_type,file = paste0("figure/GEO/",filename,"_type.csv"),row.names = F,quote = F)
cat("写入网络节点类型到 ",paste0("figure/GEO/",filename,"_type.csv"), " 共有 ",dim(cytoscape_type)[1]," 个")
ceRAN_pair1 <- miRNA_lnRNA%>%
dplyr::select(miRNA,name=lnRNA)
ceRAN_pair2 <- miRNA_mRNA%>%
dplyr::select(miRNA,name=mRNA)
cytoscape_input <- bind_rows(ceRAN_pair1,ceRAN_pair2)
write.csv(cytoscape_input,file = paste0("figure/GEO/",filename,"_input.csv"),row.names = F,quote = F)
cat("写入网络节点关系:",paste0("figure/GEO/",filename,"_input.csv")," 共有 ",dim(cytoscape_input)[1]," 个")
}
cytoscape(lnRNA_miRNA_mRNA,filename = "geo")
unique(lnRNA_miRNA_mRNA$miRNA)