GeneralizedLinearModels

最后发布时间:2025-02-06 22:26:12 浏览量:

https://github.com/U-Shift/Transport-Demand-Modelling/blob/master/5-GeneralizedLinearModels.md

Generalized Linear Models

Example exercise: Accident data from California (1993 to 1998) and Michigan (1993 to 1997)

Reference: Washington, Simon P., Karlaftis, Mathew G. e Mannering (2003) Statistical
and econometric Methods for Transportation Data Analysis, CRC

Your task: Analyze the number o accidents.

Variables:

  • ACCIDENT: Count on injury accidents over observation period;
  • STATE: indicator variable for state [0: California | 1:
    Michigan]
  • AADT1: Average annual daily traffic on major road;
  • AADT2: Average annual daily traffic on minor road;
  • Median: Median width on major road in feet;
  • DRIVE: Number of driveways within 250 ft of intersection center.

Startup

Import Libraries
library(readxl) # reading excel files
library(skimr) # summary statistics
library(tidyverse) # Pack of useful tools
library(DataExplorer) # Exploratory data analysis
library(MASS) # Negative binomial regression
library(vcd) # Godness of fit parameters
library(car) # Goodness of fit
library(rcompanion) # Goodness of fit
library(popbio) # calculate elasticities
Import dataset
dataset <- read_excel("Data/TDM_GZLM_CALMICH_Example.xlsX")
view(dataset)

The dataset looks weird. It is better to import it again, using the
RStudio menus, as follows:

  1. Go to “Import Dataset” on the “Environment” window at the upper
    right display;
  2. Click on “From excel”;
  3. Check if “First row as names” is checked;
  4. Put the number of rows you want to skip and click on “import”;
  5. This will generate a code, which you can copy and use it the next
    time you open the file.

Therefore, here is the given code:

dataset <- read_excel("Data/TDM_GZLM_CALMICH_Example.xlsx", skip = 5) #skipping the first 5 rows
view(dataset)

Get to know your data

Summary statistics

Look at the descriptive statistics of the dataframe

df <- dataset
str(df)

## tibble [84 x 6] (S3: tbl_df/tbl/data.frame)
## STATE : num [1:84] 0 0 0 0 0 0 0 0 0 0 ... ## ACCIDENT: num [1:84] 0 0 0 0 2 8 2 4 3 12 ...
## AADT1 : num [1:84] 6633 6633 6633 6633 12700 ... ## AADT2 : num [1:84] 180 51 100 51 21 1700 51 701 45 65 ...
## MEDIAN : num [1:84] 16 16 16 16 0 0 0 0 0 0 ... ## DRIVE : num [1:84] 1 1 0 1 13 7 15 12 8 14 ...

summary(df)

## STATE ACCIDENT AADT1 AADT2
## Min. :0.0000 Min. : 0.000 Min. : 2367 Min. : 15.0
## 1st Qu.:0.0000 1st Qu.: 0.000 1st Qu.: 7307 1st Qu.: 101.0
## Median :0.0000 Median : 1.000 Median :12050 Median : 348.5
## Mean :0.2857 Mean : 2.619 Mean :12870 Mean : 595.9
## 3rd Qu.:1.0000 3rd Qu.: 4.000 3rd Qu.:16659 3rd Qu.: 917.5
## Max. :1.0000 Max. :13.000 Max. :33058 Max. :3001.0
## MEDIAN DRIVE
## Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.000 Median : 1.000
## Mean : 3.798 Mean : 3.095
## 3rd Qu.: 6.000 3rd Qu.: 5.250
## Max. :36.000 Max. :15.000

Preparing your data

Have a look at the variable STATE. This is a binary variable, 0:
California and 1: Michigan. It does not mean that Michigan is somehow
higher or better than California, just because it is coded as 1. We then
should prepare the data, letting R know that this should not be treated
as a numeric variable, but as a categorical nominal one.
We use the factor function to do so, and we can also say which values
mean what, so it gets easier to read plots or model results.

df$STATE <- factor(df$STATE, labels = c("California", "Michigan"))
table(df$STATE)

##
## California Michigan
## 60 24

Now if we look again to the summary statistics, the variable STATE
will show up as a different one from the others.

skim(df)
Namedf
Number of rows84
Number of columns6
_______________________
Column type frequency:
factor1
numeric5
________________________
Group variablesNone

Data summary

Variable type: factor

skim_variablen_missingcomplete_rateorderedn_uniquetop_counts
STATE01FALSE2Cal: 60, Mic: 24

Variable type: numeric

skim_variablen_missingcomplete_ratemeansdp0p25p50p75p100hist
ACCIDENT012.623.3600.001.04.0013▇▂▁▁▁
AADT10112869.716797.8523677307.2512050.016658.5033058▇▇▅▂▁
AADT201595.86679.2715101.00348.5917.503001▇▂▁▁▁
MEDIAN013.806.0900.000.06.0036▇▁▁▁▁
DRIVE013.103.9000.001.05.2515▇▂▂▁▁
Histograms

Take a look at the histograms of the variables

plot_histogram(df, ncol = 3) #with 3 columns

Generalized Linear Models

For this example, we will have the variable ACCIDENTS as the dependent
variable.

Let’s start by plotting the density function of the dependent
variable.

plot(density(df$ACCIDENT), main="Density estimate of ACCIDENTS")

As the dependent variable is “count data”, and has discrete values (it
is not continuous), then a Poisson distribution should be more adequate.

Poisson assumption

Take a look at the mean and the variance of the dependent variable.
Check if they are equal to each other.

mean(df$ACCIDENT)

## [1] 2.619048

var(df$ACCIDENT)

## [1] 11.29891

var(df$ACCIDENT)/mean(df$ACCIDENT) #coefficient of variance

## [1] 4.314129

Note: If the coefficient of variance > 1, you have
overdispersion.

Goodness of fit

Estimate goodness of fit parameters for the PDF of ACCIDENT. This test analyses the equality between the mean and the variance through Poisson Regression Standard against the alternative of the variance exceeding the mean (Negative Binomial).

gf<-goodfit(df$ACCIDENT,  type= "poisson", method= "ML") #Maximum Likelihood method
summary(gf)

##
## Goodness-of-fit test for poisson distribution
##
## X^2 df P(> X^2)
## Likelihood Ratio 155.7106 11 1.012305e-27

Note: The null hypothesis is that it is a Poisson distribution.
Therefore, for it to be a Poisson distribution, the pvalue > 0.05.

Different models

There are many families and links that can be used, depending on the
characteristics of your data.

familylink
Gaussianidentity
Binomiallogit, probit, cloglog
Poissonlog, identity, sqrt
Gammainverse, identity, log
inverse.gaussian1/mu^2

Now let us try three possible models to fit this data:

  1. Poisson Model
  2. Overdispersed Poisson Model
  3. Negative Binomial distribution

1. Poisson model

We start by declaring what type of modelling we are performing. gml()
stands for Generalized Linear Models.
The dependent variable should be declared before an ~ and then all the
independent variables we want to try. If you want to try with all the
variables in the dataset without any changes, you can just write ~ .
and the dot assumes that are all the other.

model1 = glm(
  ACCIDENT ~ STATE + AADT2 + MEDIAN + DRIVE + offset(log(AADT1)),
  family = poisson(link = "log"),
  data = df,
  method = "glm.fit"
)

Note: The method “glm.fit” uses iteratively reweighted least
squares to fit the model. Try looking for other methods and see the
difference.

summary(model1)

##
## Call:
## glm(formula = ACCIDENT ~ STATE + AADT2 + MEDIAN + DRIVE + offset(log(AADT1)),
## family = poisson(link = "log"), data = df, method = "glm.fit")
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.1238 -1.2665 -0.5184 0.3952 3.7088
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.997e+00 1.656e-01 -54.320 < 2e-16 ***
## STATEMichigan -2.000e-01 1.590e-01 -1.258 0.2084
## AADT2 5.136e-04 7.406e-05 6.935 4.06e-12 ***
## MEDIAN -5.212e-02 2.147e-02 -2.427 0.0152 *
## DRIVE 6.552e-02 1.634e-02 4.011 6.04e-05 ***
## ---
## Signif. codes: 0 '' 0.001 '' 0.01 '' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 255.07 on 83 degrees of freedom
## Residual deviance: 167.31 on 79 degrees of freedom
## AIC: 339.29
##
## Number of Fisher Scoring iterations: 5

What can we say about the residuals and degrees of freedom?

  • residuals > degrees of freedom -> overdispersion
  • residuals < degrees of freedom -> underdispersion
  • residuals = degrees of freedom -> mean = variance

Note: In overdispersion, the estimates are reliable but the
standard errors tend to be smaller.

Pseudo-Rsquare and Log-likelihood ratio test

Calculate the pseudo-Rsquare and perform an Omnibus test

nagelkerke(model1)

## Models ## ## Model: "glm, ACCIDENT ~ STATE + AADT2 + MEDIAN + DRIVE + offset(log(AADT1)), poisson(link = \"log\"), df, glm.fit" ## Null: "glm, ACCIDENT ~ 1, poisson(link = \"log\"), df, glm.fit" ## ## Pseudo.R.squared.for.model.vs.null
## Pseudo.R.squared
## McFadden 0.331213
## Cox and Snell (ML) 0.856499
## Nagelkerke (Cragg and Uhler) 0.858945
##
## Likelihood.ratio.test ## Df.diff LogLik.diff Chisq p.value ## -4 -81.54 163.08 3.1953e-34 ## ## Number.of.observations
##
## Model: 84
## Null: 84
##
## Messages ## [1] "Note: For models fit with REML, these statistics are based on refitting with ML" ## ## Warnings
## [1] "None"

The likelihood ratio test (Omnibus test) compares the fitted model
(“Model”) with the only-intercept model (“Null”). This test verifies
if the explained variance is higher than the the unexplained variance.

Note: (h_0) There is no overdispersion in the model. Therefore,
if pvalue < 0.05, there is overdispersion, and we should choose to
use a Negative Binomial model.

Wald test

Calculate the Type III test.

Anova(model1, type = "III", test = "Wald")

## Analysis of Deviance Table (Type III tests)
##
## Response: ACCIDENT
## Df Chisq Pr(>Chisq)
## (Intercept) 1 2950.6671 < 2.2e-16 ***
## STATE 1 1.5825 0.20841
## AADT2 1 48.0944 4.062e-12 ***
## MEDIAN 1 5.8922 0.01521 *
## DRIVE 1 16.0891 6.043e-05 ***
## ---
## Signif. codes: 0 '' 0.001 '' 0.01 '' 0.05 '.' 0.1 ' ' 1

Type III tests examine the significance of each partial effect. Thus, it
considers the significance of an effect with all the other effects in
the model. The (\chi^2) (Chisq) tests the significance of the effect
added to the model by having all of the other effects.

2. Overdispersed Poisson Model

Let us correct the standard errors with an overdispersed poisson model.

model2 = glm(
  ACCIDENT ~ STATE + AADT2 + MEDIAN + DRIVE + offset(log(AADT1)),
  family = quasipoisson(link = "log"),
  data = df,
  method = "glm.fit"
)
summary(model2)

##
## Call:
## glm(formula = ACCIDENT ~ STATE + AADT2 + MEDIAN + DRIVE + offset(log(AADT1)),
## family = quasipoisson(link = "log"), data = df, method = "glm.fit")
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.1238 -1.2665 -0.5184 0.3952 3.7088
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.9972283 0.2387734 -37.681 < 2e-16 ***
## STATEMichigan -0.2000225 0.2292178 -0.873 0.38551
## AADT2 0.0005136 0.0001068 4.811 7.08e-06 ***
## MEDIAN -0.0521227 0.0309546 -1.684 0.09616 .
## DRIVE 0.0655221 0.0235482 2.782 0.00675 **
## ---
## Signif. codes: 0 '' 0.001 '' 0.01 '' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 2.07814)
##
## Null deviance: 255.07 on 83 degrees of freedom
## Residual deviance: 167.31 on 79 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 5

Note: The estimates are the same, but the standard errors have
increased because they are adjusted by the scale parameter.

3. Negative Binomial distribution

We use glm.nb() for this one.

model3 = glm.nb(ACCIDENT ~ STATE + AADT2 + MEDIAN + DRIVE + offset(log(AADT1)),
                data = df)
summary(model3)

##
## Call:
## glm.nb(formula = ACCIDENT ~ STATE + AADT2 + MEDIAN + DRIVE +
## offset(log(AADT1)), data = df, init.theta = 2.19225058, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2604 -0.9918 -0.3235 0.2587 2.3277
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.9883516 0.2416863 -37.190 < 2e-16 ***
## STATEMichigan -0.2736628 0.2574693 -1.063 0.2878
## AADT2 0.0005680 0.0001419 4.004 6.23e-05 ***
## MEDIAN -0.0633165 0.0301447 -2.100 0.0357 *
## DRIVE 0.0597809 0.0279771 2.137 0.0326 *
## ---
## Signif. codes: 0 '' 0.001 '' 0.01 '' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(2.1923) family taken to be 1)
##
## Null deviance: 125.481 on 83 degrees of freedom
## Residual deviance: 87.601 on 79 degrees of freedom
## AIC: 313.72
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 2.192
## Std. Err.: 0.762
##
## 2 x log-likelihood: -301.719

Pseudo-Rsquare and Log-likelihood ratio test

Calculate the pseudo-Rsquare and perform an Omnibus test

Anova(model3, type = "III", test = "Wald") 

## Analysis of Deviance Table (Type III tests)
##
## Response: ACCIDENT
## Df Chisq Pr(>Chisq)
## (Intercept) 1 1383.1076 < 2.2e-16 ***
## STATE 1 1.1297 0.28783
## AADT2 1 16.0325 6.227e-05 ***
## MEDIAN 1 4.4118 0.03569 *
## DRIVE 1 4.5658 0.03262 *
## ---
## Signif. codes: 0 '' 0.001 '' 0.01 '' 0.05 '.' 0.1 ' ' 1

Wald test

Calculate the Type III test.

nagelkerke(model3)

## Models ## ## Model: "glm.nb, ACCIDENT ~ STATE + AADT2 + MEDIAN + DRIVE + offset(log(AADT1)), df, 2.19225058, log" ## Null: "glm.nb, ACCIDENT ~ 1, df, 0.6629432212, log" ## ## Pseudo.R.squared.for.model.vs.null
## Pseudo.R.squared
## McFadden 0.150312
## Cox and Snell (ML) 0.470285
## Nagelkerke (Cragg and Uhler) 0.477249
##
## Likelihood.ratio.test ## Df.diff LogLik.diff Chisq p.value ## -4 -26.687 53.375 7.1132e-11 ## ## Number.of.observations
##
## Model: 84
## Null: 84
##
## Messages ## [1] "Note: For models fit with REML, these statistics are based on refitting with ML" ## ## Warnings
## [1] "None"

Comparing model 1 and model 3

AIC and BIC

Akaike’s Information Criteria (AIC) and Bayesian Information Criteria
(BIC) evaluates the quality of a finite set of models.
AIC and BIC consider the maximum likelihood and the number of parameters
in assessing the quality of the models. Nonetheless, the difference
between both methods is that the BIC takes into account the number of
observations of the dataset.
Calculate the AIC and the BIC.

aic <- data.frame(model1 = AIC(model1), model3 = AIC(model3))
bic <- data.frame(model1 = BIC(model1), model3 = BIC(model3))

AIC and BIC

model1model3
339.2905313.7189
model1model3
351.4446328.3038

Note: The smaller the values of AIC and BIC, the better the model.

Elasticities

Calculate the elasticities of the negative binomial model. You can also
try to calculate for the other models.

el1 <- as.numeric(model3$coefficients["AADT1"] * mean(df$AADT1)/mean(df$ACCIDENT))
el2 <- as.numeric(model3$coefficients["AADT2"] * mean(df$AADT2)/mean(df$ACCIDENT))
el3 <- as.numeric(model3$coefficients["MEDIAN"] * mean(df$MEDIAN)/mean(df$ACCIDENT))
el4 <- as.numeric(model3$coefficients["DRIVE"] * mean(df$DRIVE)/mean(df$ACCIDENT))

elasticity <- data.frame(variable = c("AADT1", "AADT2", "MEDIAN", "DRIVE"),
                         elasticity = c(el1, el2, el3, el4))
variableelasticity
AADT1NA
AADT20.1292241
MEDIAN-0.0918089
DRIVE0.0706501

Note: AADT1 does not have a value because it is the offset of
the model. Note: STATE is a categorical variable. We would need
to calculate the pseudo-elasticities in this case. Follow the same
logic of the code and try to calculate for yourselves.