wilcox.test(as.numeric(expression)~group,data=rt)
图片alt
两分类变量相关性描述
tableStat <- table(cluster_clinical[,c("T","cluster")]) pStat <- fisher.test(tableStat)
library(ggplot2) library(ggpubr) plot_df_reshape <- reshape2::melt(expr_data_anno_13,id.vars="group",variable.name="genes") plot_df_reshape$group <- factor(plot_df_reshape$group,levels = c("Tumor","Normal"),ordered = T) compare_means <- compare_means(value ~ group, data = plot_df_reshape, group.by = "genes") write.csv(compare_means,file = "result/compare_means.csv",row.names = F,quote = F)
ggplot(plot_df_reshape, aes(x= genes, y = value,fill=group)) + geom_violin(aes(fill = group),position = position_dodge(width = 0.8)) + #最大的不同 geom_boxplot(show.legend = F,width=0.1,position = position_dodge(width = 0.8),outlier.colour = NA) + scale_fill_manual(values = c(brewer.pal(7, "Set2")[c(1, 2, 5)])) +#调颜色 theme_classic() +#选主题 theme(panel.background = element_rect(fill = "white", #框线 colour = "black", size = 0.25), axis.line = element_line(colour = "black", size = 0.25),# x轴的轴线 axis.title = element_text(size = 13, face = "plain", color = "black"),#x轴的标题 axis.text = element_text(size = 12, face = "plain", color = "black"), axis.text.x= element_text(angle=90,hjust=0), ) +#图例位置 xlab("") +#把group去掉 ylab(paste0("Gene Expression"))+ stat_compare_means(label = "p.format")