y = x *2 - 1
import tensorflow as tf import numpy as np print(tf.__version__) # 1.4.0 print(np.__version__) # 1.19.4 # create data x_data = np.linspace(-1,1,5).astype(np.float32) y_data = x_data*2-1 # crate tenaorflow structure Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0)) biases = tf.Variable(tf.zeros([1])) y = x_data*Weights+biases loss = tf.reduce_mean(tf.square(y-y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) sess = tf.Session() init = tf.initialize_all_variables(); sess.run(init) for step in range(50): sess.run(train) if step % 10 ==0: print("loss=",sess.run(loss), " Weights=", step,sess.run(Weights), " biases=", sess.run(biases))
matrix1 = tf.constant([[3,3]]) # 1行两列 常量 matrix2 = tf.constant([[2], [2]]) product = tf.matmul(matrix1,matrix2) # matrix multiply np.dot(m1,m2) with tf.Session() as sess: result = sess.run(product) print(result)
state = tf.Variable(0,name="counter") # print(state.name) one = tf.constant(1) new_value = tf.add(state ,one) update = tf.assign(state,new_value) init = tf.initialize_all_variables() # 初始化所有变量 with tf.Session() as sess: sess.run(init) for _ in range(3): print(sess.run(update)) print(sess.run(state))
input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output = tf.multiply(input1, input2) with tf.Session() as sess: print(sess.run(output,feed_dict={input1:[7.,8], input2:[2.]}))
y = Wxy = AF(Wx)图片alt
y = Wxy = AF(Wx)
图片alt