根据中位值分组

expr_gene$Overall_Survival_Status <-  as.numeric(expr_gene$Overall_Survival_Status)
diff <- survdiff(Surv(days_to_last_followup,Overall_Survival_Status)~low_high,data = expr_gene)

单因素生分析

Nomogram绘制


library(survival)
library(rms)
library(tidyverse)
data <- read.csv("Liver_clinical_arrange.csv") %>%
    mutate(age = ageNum, riskScore = riskScoreNum)
    
View(data)
dd<-datadist(data)
options(datadist=dd)
f <- cph(Surv(futime_year,fustat) ~ age + stage+T+riskScore,data=data, x=T, y=T, surv=T)
surv <- Survival(f)
nom <- nomogram(f,fun = list(function(x)surv(1,x),function(x)surv(3,x),function(x)surv(5,x)),
                lp=F,
                funlabel = c("1-year Survival Probability","3-year Survival Probability","5-year Survival Probability"))

png(filename = "nomogram.png",width = 9,height = 8,res = 300,units = "in")
plot(nom)
dev.off()

图片alt

图片alt

预测模型校准曲线

http://www.360doc.com/content/18/0714/09/46405145_770258087.shtml
用于术前预测结直肠癌淋巴结转移的放射组学列线图的开发和验证

图片alt

图片alt


做了预测模型校准曲线 (Calibration curve),两个图分别是建模队列和验证队列。图的横坐标是预测概率:用预测模型对事件发生的可能性(Probability)进行预测,0到1表示发生事件可能性是0到100%。纵坐标是实际概率:患者实际的事件发生率。红色的线是拟合线,表示预测值对应的实际值。

使用列线图对结肠癌复发的个体化预测

图片alt

图片alt

m6A相关lncRNA生信挖掘套路解析